- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Christopher V (2)
-
Aja, Melissa (1)
-
Anderson, Christopher V. (1)
-
Appleton, Miles (1)
-
Arnashus, Abigail (1)
-
Arnold, Doug S (1)
-
Barnett, Kareen (1)
-
Bastiaans, Elizabeth (1)
-
Boronow, Katherine E (1)
-
Brisson, Jennifer A (1)
-
Calder, Damany (1)
-
Castañeda, Maria_del Rosario (1)
-
Clay, Samuel (1)
-
Clobert, Jean (1)
-
Connior, Matthew B (1)
-
Cooper, Taylor L (1)
-
Cusick, Karen (1)
-
Denny, Kathryn L. (1)
-
Diaz_Jr, Raul E (1)
-
Doshna, Benjamin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The structure of sarcomeres imposes limits to the capacity of striated muscle to change length and produce force, with z-disc and myosin filament interactions constraining shortening. Conversely, supercontracting muscles, hitherto only known among vertebrates in the tongue retractor muscle (m. hyoglossus) of chameleons, have perforated z-discs that allow myosin filaments to extend through them into adjacent sarcomeres, permitting continued shortening and force development. Additional hyolingual muscles in chameleons undergo extreme length changes during feeding as well and may benefit from supercontractile properties. We compared length–tension relationship data and transmission electron microscopy images from four chameleon muscles to test for the presence of additional supercontracting muscle. We document the second known example of a supercontracting muscle among vertebrates (the m. sternohyoideus superficialis) and show that the m. sternohyoideus profundus exhibits functional convergence with supercontracting muscles by increasing the range of muscle lengths over which it can exert force through the exploitation of sarcomere length non-uniformity across its muscle fibres. Additionally, we show that chameleon supercontracting muscles may share common contractile and structural properties due to a common origin from occipital somites. These results provide important insights into the developmental and evolutionary patterns associated with supercontracting muscle and extreme muscle elongation.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Stroud, James T; Kolbe, Jason J; Doshna, Benjamin; Anderson, Christopher V; French, Susannah S; Miles, Donald B; Zani, Peter A; Suh, Jonathan J; Passos, Daniel C; Roberts, Thomas J; et al (, The American Naturalist)Free, publicly-accessible full text available October 13, 2026
-
Denny, Kathryn L.; Huskey, Steve; Anderson, Christopher V.; Smith, Michael E. (, Integrative And Comparative Biology)Synopsis This study extends recent research demonstrating that the veiled chameleon (Chamaeleo calyptratus) can produce and detect biotremors. Chameleons were paired in various social contexts: dominance (male–male; female–female C. calyptratus); courtship (male–female C. calyptratus); heterospecific (C. calyptratus + C. gracilis); and inter-size class dominance (adult + juvenile C. calyptratus). Simultaneous video and accelerometer recordings were used to monitor their behavior and record a total of 398 biotremors. Chamaeleo calyptratus produced biotremors primarily in conspecific dominance and courtship contexts, accounting for 84.7% of the total biotremors recorded, with biotremor production varying greatly between individuals. Biotremors were elicited by visual contact with another conspecific or heterospecific, and trials in which chameleons exhibited visual displays and aggressive behaviors were more likely to record biotremors. Three classes of biotremor were identified—hoots, mini-hoots, and rumbles, which differed significantly in fundamental frequency, duration, and relative intensity. Biotremor frequency decreased with increasing signal duration, and frequency modulation was evident, especially in hoots. Overall, the data show that C. calyptratus utilizes substrate-borne vibrational communication during conspecific and possibly heterospecific interactions.more » « less
An official website of the United States government
